\mathbf{X} decoupler design worksheet

Aaron Ramirez
4/24/2016
Design worksheet for a 4-dof leadscrew nut flexure stiff in the axial and torsional windup directions

This is the analytical modeling for a two-stage flexure which decouples misalignments from the output stage. I refer to the intermediate stage as stage 1 and the output as stage 2, blades are subscripted with b and wires with w.

Beam parameters

$\mathrm{E}:=70 \cdot \mathrm{GPa}$	Elastic modulus	$\mathrm{E}:=\mathrm{E}$
$\mathrm{L}_{\mathrm{x}}:=40 \cdot \mathrm{~mm}$	Beam length	$\mathrm{L}_{\mathrm{x}}:=\mathrm{L}_{\mathrm{x}}$
$\mathrm{t}_{\mathrm{x}}:=0.5 \cdot \mathrm{~mm}$	Beam thickness	$\mathrm{t}_{\mathrm{x}}:=\mathrm{t}_{\mathrm{x}}$
$\mathrm{b}:=0.45 \cdot \mathrm{in}$	Beam depth	$\mathrm{b}:=\mathrm{b}$
$\sigma_{\mathrm{xmax}}:=200 \cdot \mathrm{MPa}$	Max allowable stress	$\sigma_{\max }:=\sigma_{\max }$

- Stage 1 definitions

Blade

$$
\begin{aligned}
& \mathrm{l}_{1 \mathrm{~b}}:=10 \cdot \mathrm{~mm} \\
& \mathrm{~b}_{1 \mathrm{~b}}:=15 \cdot \mathrm{~mm} \\
& \mathrm{t}_{1 \mathrm{~b}}:=0.5 \cdot \mathrm{~mm}
\end{aligned}
$$

Wire
$1_{1 \mathrm{w}}:=1_{1 \mathrm{~b}}=10 \cdot \mathrm{~mm}$
$\mathrm{b}_{1 \mathrm{w}}:=0.5 \cdot \mathrm{~mm}$
$\mathrm{t}_{1 \mathrm{w}}:=0.5 \cdot \mathrm{~mm}$
Spacing between blade plane and wire plane
$\mathrm{n}_{1 \mathrm{w}}:=2 \quad$ Number of wires
$\mathrm{d}_{1 \mathrm{bw}}:=15 \cdot \mathrm{~mm}$
$\mathrm{d}_{1 \mathrm{ww}}:=10 \cdot \mathrm{~mm}$

- Stage 2 definitions

Blade

$$
l_{2 b}:=10 \cdot \mathrm{~mm}
$$

$\mathrm{b}_{2 \mathrm{~b}}:=\mathrm{b}_{1 \mathrm{~b}}=15 \cdot \mathrm{~mm}$
$\mathrm{t}_{2 \mathrm{~b}}:=0.5 \cdot \mathrm{~mm}$
Wire

$$
\begin{aligned}
& \mathrm{l}_{2 \mathrm{w}}:=8 \cdot \mathrm{~mm} \\
& \mathrm{~b}_{2 \mathrm{w}}:=\mathrm{b}_{1 \mathrm{w}}=0.5 \cdot \mathrm{~mm} \\
& \mathrm{t}_{2 \mathrm{w}}:=\mathrm{b}_{2 \mathrm{w}}=0.5 \cdot \mathrm{~mm}
\end{aligned}
$$

Flexure spacings

$$
\mathrm{d}_{2 \mathrm{ww}}:=10 \cdot \mathrm{~mm} \quad \text { Distance between wires (height of stage) }
$$

$$
\mathrm{d}_{2 \mathrm{bb}}:=10 \cdot \mathrm{~mm} \quad \text { Distance between blades (width of stage) }
$$

Derived parameters

- Cross sectional areas

$$
\begin{aligned}
& \mathrm{A}_{1 \mathrm{~b}}:=\mathrm{t}_{1 \mathrm{~b}} \cdot \mathrm{~b}_{1 \mathrm{~b}}=7.5 \cdot \mathrm{~mm}^{2} \\
& \mathrm{~A}_{1 \mathrm{w}}:=\mathrm{t}_{1 \mathrm{w}} \cdot \mathrm{~b}_{1 \mathrm{w}}=0.25 \cdot \mathrm{~mm}^{2} \\
& \mathrm{~A}_{2 \mathrm{~b}}:=\mathrm{t}_{2 \mathrm{~b}} \cdot \mathrm{~b}_{2 \mathrm{~b}}=7.5 \cdot \mathrm{~mm}^{2} \\
& \mathrm{~A}_{2 \mathrm{w}}:=\mathrm{t}_{2 \mathrm{w}} \cdot \mathrm{~b}_{2 \mathrm{w}}=0.25 \cdot \mathrm{~mm}^{2}
\end{aligned}
$$

- Moments of inertia

$$
\begin{aligned}
& \mathrm{I}_{1 \mathrm{byy}}:=\frac{1}{12} \cdot \mathrm{t}_{1 \mathrm{~b} \cdot} \cdot \mathrm{~b}_{1 \mathrm{~b}}{ }^{3}=140.625 \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{1 \mathrm{wyy}}:=\frac{1}{12} \cdot \mathrm{t}_{1 \mathrm{w}} \cdot \mathrm{~b}_{1 \mathrm{w}}{ }^{3}=5.208 \times 10^{-3} \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{1 \mathrm{bxx}}:=\frac{1}{12} \cdot \mathrm{t}_{1 \mathrm{~b}}{ }^{3} \cdot \mathrm{~b}_{1 \mathrm{~b}}=0.156 \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{1 \mathrm{wxx}}:=\frac{1}{12} \cdot \mathrm{t}_{1 \mathrm{w}}{ }^{3} \cdot \mathrm{~b}_{1 \mathrm{w}}=5.208 \times 10^{-3} \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{2 \mathrm{byy}}:=\frac{1}{12} \cdot \mathrm{t}_{2 \mathrm{~b}} \cdot \mathrm{~b}_{2 \mathrm{~b}}^{3}=140.625 \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{2 \mathrm{wyy}}:=\frac{1}{12} \cdot \mathrm{t}_{2 \mathrm{w}} \cdot \mathrm{~b}_{2 \mathrm{w}}^{3}=5.208 \times 10^{-3} \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{2 \mathrm{bxx}}:=\frac{1}{12} \cdot \mathrm{t}_{2 \mathrm{~b}}^{3} \cdot \mathrm{~b}_{2 \mathrm{~b}}=0.156 \cdot \mathrm{~mm}^{4} \\
& \mathrm{I}_{2 \mathrm{wxx}}:=\frac{1}{12} \cdot \mathrm{t}_{2 \mathrm{w}} \cdot \mathrm{~b}_{2 \mathrm{w}}^{3}=5.208 \times 10^{-3} \cdot \mathrm{~mm}^{4}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{yy}}:=\frac{1}{12} \cdot \mathrm{~b} \cdot \mathrm{t}_{\mathrm{x}}{ }^{3}=0.119 \cdot \mathrm{~mm}^{4} \quad$ Area moment of inertia along the YY axis (the 'weak' axis)
$\mathrm{k}_{\mathrm{fg}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{yy}}}{\mathrm{L}_{\mathrm{x}}^{3}}=1.563 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}} \quad$ Stiffness of a single fixed-guided beam
$\mathrm{k}_{\mathrm{x}}:=2 \cdot \mathrm{k}_{\mathrm{fg}}=3.125 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}} \quad \begin{aligned} & \text { Factor of } 4, \text { since there are four beams per stage; } \\ & \text { Factor of } 1 / 2 \text {, since there are two stages in series }\end{aligned}$

Applied loads and resulting displacements, stresses

$\mathrm{F}_{\mathrm{x}}:=1 \cdot \mathrm{~N}$
$\delta_{\mathrm{X}}:=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{k}_{\mathrm{X}}}=0.32 \cdot \mathrm{~mm} \quad$ Stage displacement

Maximum stress in the beam - assume this occurs at each end of the beam (fixed-guided), at the top and bottom 'fibers'
(Howell pg 410)
$M_{y}:=F_{x} \cdot \frac{L_{x}}{2}=20 \cdot N \cdot m m \quad$ (at both ends of beam)
$\sigma_{z}:=\frac{\mathrm{M}_{\mathrm{y}} \cdot \frac{\mathrm{t}_{\mathrm{x}}}{2}}{\mathrm{I}_{\mathrm{yy}}}=41.995 \cdot \mathrm{MPa}$
Given a maximum allowable stress, what is my maximum displacement?
$\mathrm{x}_{\max }:=\frac{\mathrm{L}_{\mathrm{x}}{ }^{2} \cdot \sigma_{\mathrm{xmax}}}{3 \cdot \mathrm{E} \cdot \mathrm{t}_{\mathrm{x}}}=3.048 \cdot \mathrm{~mm}$
With two sets of these flexures in series, I can travel twice as far
$\delta_{\mathrm{xv}}:=2 \cdot \mathrm{x}_{\text {max }}=6.095 \cdot \mathrm{~mm}$

Stiffness between ground and intermediate stage

X Blade bends about its stiff axis

$$
\begin{aligned}
& \mathrm{k}_{1 \mathrm{bx}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{1 \mathrm{byy}}}{\mathrm{l}_{1 \mathrm{~b}}^{3}}=118.125 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} \quad \text { Dont forget shear correction factor! } \\
& \mathrm{k}_{1 \mathrm{wx}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{1 \mathrm{wyy}}}{1_{1 \mathrm{w}}^{3}}=4.375 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} \\
& \mathrm{k}_{1 \mathrm{x}}:=2 \cdot \mathrm{k}_{1 \mathrm{wx}}+\mathrm{k}_{1 \mathrm{bx}}=118.134 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}
\end{aligned}
$$

Y Stiffness in the blade and wire axial direction

$$
\begin{aligned}
& \mathrm{k}_{1 \mathrm{by}}:=\frac{\mathrm{E} \cdot \mathrm{~A}_{1 \mathrm{~b}}}{1_{1 \mathrm{~b}}}=52.5 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} \\
& \mathrm{k}_{1 \mathrm{wy}}:=\frac{\mathrm{E} \cdot \mathrm{~A}_{1 \mathrm{w}}}{1_{1 w}}=1.75 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} \\
& \mathrm{k}_{1 \mathrm{y}}:=\mathrm{k}_{1 \mathrm{by}}+\mathrm{n}_{1 \mathrm{w}} \cdot \mathrm{k}_{1 \mathrm{wy}}=56 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}
\end{aligned}
$$

Z Blade bends about its weak axis

$$
\begin{aligned}
& \mathrm{k}_{1 \mathrm{bz}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{1 \mathrm{bxx}}}{1_{1 \mathrm{~b}}^{3}}=0.131 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} \\
& \mathrm{k}_{1 \mathrm{wz}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{1 \mathrm{wxx}}}{1_{1 \mathrm{w}}^{3}}=4.375 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{k}_{1 \mathrm{z}}:=2 \cdot \mathrm{k}_{1 \mathrm{wz}}+\mathrm{k}_{1 \mathrm{bz}}=0.14 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}
$$

$\theta \mathrm{x} \quad$ Stage tries to twist about leadscrew axis (X)

$$
\mathrm{k}_{1 \theta \mathrm{x}}:=\frac{\mathrm{k}_{1 \mathrm{by}} \cdot \mathrm{n}_{1 \mathrm{w}} \cdot \mathrm{k}_{1 \mathrm{wy}}}{\mathrm{k}_{1 \mathrm{by}}+\mathrm{n}_{1 \mathrm{w}} \cdot \mathrm{k}_{1 \mathrm{wy}}} \cdot \mathrm{~d}_{1 \mathrm{bw}}{ }^{2}=738.281 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
$$

θy
Stage yaws about Y

Blade tries to bend against its stiff direction
$\theta z \quad$ Stage pitches about Z

$$
\begin{array}{ll}
\mathrm{k}_{1 \mathrm{~b} \theta \mathrm{z}}:=\frac{1}{12} \cdot \mathrm{t}_{1 \mathrm{~b}} \cdot \mathrm{~b}_{1 \mathrm{~b}}^{3} \cdot \frac{\mathrm{E}}{1_{1 \mathrm{~b}}}=984.375 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} & \text { Blade contribution: } \\
& \text { Moment bending about cantilever tip } \\
\mathrm{k}_{1 \mathrm{w} \theta \mathrm{z}}:=\frac{\mathrm{k}_{1 \mathrm{wy}} \cdot \mathrm{k}_{1 \mathrm{wy}}}{\mathrm{k}_{1 \mathrm{wy}}+\mathrm{k}_{1 \mathrm{wy}}} \cdot \mathrm{~d}_{1 \mathrm{ww}} 2=87.5 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} & \text { Wire contribution: push-pull pair } \\
\mathrm{k}_{1 \theta \mathrm{z}}:=\mathrm{k}_{1 \mathrm{~b} \theta \mathrm{z}}+\mathrm{k}_{1 \mathrm{w} \theta \mathrm{z}}=1.072 \times 10^{3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} & \text { Combine the equivalent stiffnesses }
\end{array}
$$

Stiffnesses between intermediate stage and output

X Sum of blades bending in stiff direction and wires bending

$$
\begin{array}{ll}
\mathrm{k}_{2 \mathrm{bx}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{2 \mathrm{byy}}}{\mathrm{l}_{2 \mathrm{~b}}^{3}}=118.125 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} & \text { Individual blade bending in stiff direction } \\
\mathrm{k}_{2 \mathrm{wx}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{2 \mathrm{wyy}}}{1_{2 \mathrm{w}}^{3}}=8.545 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} & \text { Apply shear correction factor! } \\
\mathrm{k}_{2 \mathrm{x}}:=\mathrm{k}_{2 \mathrm{bx}}+\mathrm{k}_{2 \mathrm{wx}}=118.134 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}} &
\end{array}
$$

Y Sum of blade bending in compliant direction and wire bending

$$
\begin{aligned}
& \mathrm{k}_{2 \mathrm{by}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{2 \mathrm{bxx}}}{\mathrm{l}_{2 \mathrm{~b}}^{3}}=131.25 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}} \\
& \mathrm{k}_{2 \mathrm{wy}}:=\frac{12 \cdot \mathrm{E} \cdot \mathrm{I}_{2 \mathrm{wxx}}}{\mathrm{l}_{2 \mathrm{w}}^{3}}=8.545 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}}
\end{aligned}
$$

$\mathrm{k}_{2 \mathrm{y}}:=2 \mathrm{k}_{2 \mathrm{by}}+8 \cdot \mathrm{k}_{2 \mathrm{wy}}=0.331 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}$

Z
Stiffness in the axial direction
$\mathrm{k}_{2 \mathrm{bz}}:=\frac{\mathrm{E} \cdot \mathrm{A}_{2 \mathrm{~b}}}{\mathrm{l}_{2 \mathrm{~b}}}=52.5 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}$
$\mathrm{k}_{2 \mathrm{wz}}:=\frac{\mathrm{E} \cdot \mathrm{A}_{2 \mathrm{w}}}{\mathrm{l}_{2 \mathrm{w}}}=2.188 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}$
$\mathrm{k}_{2 \mathrm{z}}:=2 \cdot \mathrm{k}_{2 \mathrm{bz}}+8 \cdot \mathrm{k}_{2 \mathrm{wz}}=122.5 \cdot \frac{\mathrm{~N}}{\mu \mathrm{~m}}$
$\theta_{\mathrm{x}} \quad$ Stiffness in the leadscrew windup direction Contribution of wire flexures

$$
\mathrm{k}_{2 \mathrm{w} \theta \mathrm{x}}:=\mathrm{k}_{2 \mathrm{wz}} \cdot\left(\frac{1}{2} \cdot \mathrm{~d}_{2 \mathrm{ww}}\right)^{2}=54.688 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
$$

Contribution of blade flexures

$$
\begin{aligned}
& \mathrm{k}_{2 \mathrm{~b} \theta \mathrm{x}}:=\mathrm{k}_{2 \mathrm{by}} \cdot\left(\frac{1}{2} \cdot \mathrm{~d}_{2 \mathrm{bb}}\right)^{2}=3.281 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} \\
& \mathrm{k}_{2 \theta \mathrm{x}}:=8 \mathrm{k}_{2 \mathrm{w} \theta \mathrm{x}}+2 \cdot \mathrm{k}_{2 \mathrm{~b} \theta \mathrm{x}}=444.063 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
\end{aligned}
$$

$\theta_{\mathrm{y}} \quad$ Stage 2 roll direction stiffness
Wire contribution: bending

$$
\mathrm{k}_{2 \mathrm{w} \theta \mathrm{y}}:=\mathrm{k}_{2 \mathrm{wx}} \cdot\left(\frac{1}{2} \cdot \mathrm{~d}_{2 \mathrm{bb}}\right)^{2}=0.214 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
$$

Blade contribution

$$
\begin{aligned}
& \mathrm{k}_{2 \mathrm{~b} \theta \mathrm{y}}:=\frac{1}{12} \cdot \mathrm{t}_{2 \mathrm{~b}} \cdot \mathrm{~b}_{2 \mathrm{~b}}^{3} \cdot \frac{\mathrm{E}}{\mathrm{l}_{2 \mathrm{~b}}}=984.375 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} \\
& \mathrm{k}_{2 \theta \mathrm{y}}:=8 \cdot \mathrm{k}_{2 \mathrm{w} \theta \mathrm{y}}+2 \cdot \mathrm{k}_{1 \mathrm{~b} \theta \mathrm{z}}=1.97 \times 10^{3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}}
\end{aligned}
$$

$\theta_{\mathrm{Z}} \quad$ Stage 2 pitching stiffness

$$
\begin{aligned}
& \mathrm{k}_{2 \mathrm{w} \theta \mathrm{z}}:=\mathrm{k}_{2 \mathrm{wy}} \cdot\left(\frac{1}{2} \cdot \mathrm{~b}_{2 \mathrm{~b}}\right)^{2}=0.481 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{rad}} \\
& \mathrm{k}_{2 \mathrm{~b} \theta \mathrm{z}}:=
\end{aligned}
$$

Resisted by axial stiffness of wires and bending stiffness of blade

$$
\mathrm{k}_{2 \theta \mathrm{z}}:=8 \cdot \mathrm{k}_{2 \mathrm{w} \theta \mathrm{z}}+\mathrm{a}
$$

Resulting output stiffnesses

Constrained directions
$\mathrm{k}_{\mathrm{X}}:=\mathrm{I}$
$\mathrm{K}_{\theta \mathrm{x}}:=$

Unconstrained directions
$\mathrm{k}_{\mathrm{z}}:=$ ■

$$
\mathrm{k}_{\mathrm{y}}:=
$$

$\mathrm{K}_{\theta \mathrm{y}}$
$K_{\theta z}$

